No Calculator

How the **Circuit** works:

Work problem #1. Find the problem with the answer to problem 1. Label this problem #2. Continue numbering the problems in this fashion. You should get 25 and 50 as your last answer.

Answer: 25 and 50 # 1 – Evaluate: $\lim_{x \to 0} \frac{\sqrt{x+1}-2}{x-3}$	Answer: $-2\sqrt{3}$ # At what value(s) of x does $f(x) = x^4 - 18x^2 \text{ have a relative minimum?}$
Answer: $-\frac{2}{5}$ # Find the derivative, $\frac{dy}{dx}$, of $x^2y - 5y = 12$ and evaluate it at the point $(1, -3)$.	Answer: $12x^2 \sin^3(x^3)\cos(x^3)$ # Evaluate: $\lim_{x \to \infty} \frac{5x^3 - 3}{2x^3 + 1}$
Answer: $(1, 5)$ # A particle moves along a horizontal line so that its position is given by $s(t) = t^3 - 9t^2 + 15t + 4, \text{ where } t \ge 0. \text{ When is the particle speeding up?}$	Answer: $\frac{1}{3}$ # Find y' given $y = x^2 \cos x$.

Answer: 2 Answer: $-x^2 \sin x + 2x \cos x$ #____ - Write an equation of the line tangent to #_____- Find f'(x) given $f(x) = \frac{x^2}{\tan x}$. the graph of $y = x^3 + 3x^2 + 2$ at its point of inflection Answer: -3 and 3 Answer: (1, 3) and $(5, \infty)$ #____ - Evaluate: $\lim_{h \to 0} \frac{\sin\left(\frac{\pi}{3} + h\right) - \sin\frac{\pi}{3}}{h}$ #____ - Given $f(x) = \sqrt[3]{x}$. Write an equation of a tangent line to the function f when x = 8 and use it to approximate the value of $\sqrt[3]{11}$. Answer: y-4=-3(x+1)Answer: $\frac{5}{2}$ # - A particle moves along a horizontal line #_____ - If $f(x) = \cos(4x)$, find $f'(\frac{\pi}{12})$. so that its position is given by $s(t) = t^3 - 9t^2 + 15t + 4$, where $t \ge 0$. When is the particle moving to the left?

	1 0
Answer: $-\frac{3}{2}$	Answer: $\frac{2x \tan x - x^2 \sec^2 x}{\tan^2 x}$
# A spherical balloon is inflated with	# Find y' given $y = \sin^4(x^3)$.
helium at the rate of $200\pi \frac{\text{ft}^3}{\text{min}}$. How fast is the	
balloon's radius increasing in ft/min at the instant	
the radius is 5 ft? (Volume of a sphere = $\frac{4}{3}\pi r^3$)	
Answer: $\frac{1}{2}$	Answer: $2\frac{1}{4}$
# If x is increasing at a	# Find two positive numbers such that the
rate of 2 units per second, 13	sum of the first plus two times the second is 100 and their product is a maximum.
find the rate of change of θ at the instant when $x = 12$ units.	and their product is a maximum.
x	

Free Response - No Calculator

Let f be a twice-differentiable function such that f(2) = 5 and f(5) = 2. Let g be the function given by g(x) = f(f(x)).

- (a) Explain why there must be a value c for 2 < c < 5 such that f'(c) = -1.
- (b) Show that g'(2) = g'(5). Use this result to explain why there must be a value k for 2 < k < 5 such that g''(k) = 0.
- (c) Show that if f''(x) = 0 for all x, then the graph of g does not have a point of inflection.
- (d) Let h(x) = f(x) x. Explain why there must be a value r for 2 < r < 5 such that h(r) = 0.

Use your calculator!

The second derivative of a function f is given by $f''(x) = \sin(3x) - \cos(x^2)$. How many points of inflection does the graph of f have on the interval 0 < x < 3?

- (A) One
- (B) Three
- (C) Four
- (D) Five